Estimating soil erosion using MODIS and TM images based on support vector machine and à trous wavelet
نویسندگان
چکیده
To date, there is little work concerning the application of fusing images with significantly different spectral and spatial resolutions. In this paper, a novel method based on support vector machine (SVM) is proposed to quickly estimate soil erosion using the fused results produced from fusing such multisensor images by à trous wavelet transform (AWT). In the proposed method, the AWT is used to derive the high-resolution vegetation coverage image (HVCI) while the SVM overlays the HVCI and the slope image to derive the soil erosion map. By taking MODIS and TM images as an example, the potential of the proposed method is evaluated both quantitatively and qualitatively. The results show that it is feasible to perform the fusion of MODIS and TM images and the soil erosion map produced from the fused images by the proposed method can be achieved with an accuracy level comparable to that solely from the TM images. The merging of MODIS and TM images partly solves the constrains associated with the TM data availability which is caused by the lower revisit frequency and narrower spatial coverage. © 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Multi-spectral and SAR images fusion via Mallat and À trous wavelet transform
The information which is contained in the multi-spectral and SAR images have different characteristic. Multi-spectral images contain a great deal of spectral information, whereas SAR images contain rich texture information, such as buildings and road network. SAR and TM images fusion based on the wavelet transform ensure the fusion image showing more spatial detail, not only conserving the spec...
متن کاملImproving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion
Empirical mode decomposition (EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines (SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show that the proposed method is superior to the fusion methods based on à-trous wavelet transform (AWT...
متن کاملAdvanced machine learning methods for wind erosion monitoring in southern Iran
Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 13 شماره
صفحات -
تاریخ انتشار 2011